Średnia ruchoma Ten przykład pokazuje, w jaki sposób obliczyć średnią ruchomą szeregu czasowego w Excelu. Średnia ruchoma służy do wyrównywania nieprawidłowości (szczytów i dolin) w celu łatwego rozpoznania trendów. 1. Najpierw przyjrzyjmy się naszej serii czasowej. 2. Na karcie Dane kliknij Analiza danych. Uwaga: nie można znaleźć przycisku Analiza danych Kliknij tutaj, aby załadować dodatek Analysis ToolPak. 3. Wybierz średnią ruchomą i kliknij OK. 4. Kliknij pole Input Range i wybierz zakres B2: M2. 5. Kliknij w polu Interwał i wpisz 6. 6. Kliknij pole Zakres wyjściowy i wybierz komórkę B3. 8. Narysuj wykres tych wartości. Objaśnienie: ponieważ ustawiliśmy przedział na 6, średnia ruchoma jest średnią z poprzednich 5 punktów danych i bieżącego punktu danych. W rezultacie szczyty i doliny są wygładzone. Wykres pokazuje rosnący trend. Excel nie może obliczyć średniej ruchomej dla pierwszych 5 punktów danych, ponieważ nie ma wystarczająco dużo poprzednich punktów danych. 9. Powtórz kroki od 2 do 8 dla przedziału 2 i odstępu 4. Wniosek: Im większy przedział, tym bardziej wygładzone są szczyty i doliny. Im mniejszy interwał, tym przybliżone są średnie ruchome do rzeczywistych punktów danych. Przeprowadzanie średniego kalkulatora Mając listę danych sekwencyjnych, można skonstruować średnią ruchomą punktu n (lub średnią kroczącą), znajdując średnią każdego zestawu n kolejne punkty. Na przykład jeśli masz uporządkowany zestaw danych 10, 11, 11, 15, 13, 14, 12, 10, 11, to 4-punktowa średnia ruchoma wynosi 11,75, 12,5, 13,25, 13,5, 12,25, 11,75 w celu wygładzenia danych sekwencyjnych, uzyskuje się ostre piki i spadki mniej wyraźne, ponieważ każdy surowy punkt danych podaje się tylko w ułamkowej masie w średniej ruchomej. Im większa wartość n. im płynniejszy wykres średniej ruchomej w porównaniu z wykresem oryginalnych danych. Analitycy giełdowi często patrzą na średnie ruchy danych o cenach akcji, aby przewidzieć trendy i wyraźniej zobaczyć wzorce. Możesz użyć poniższego kalkulatora, aby znaleźć średnią kroczącą zbioru danych. Liczba terminów w prostej średniej ruchowej n-Point Jeśli liczba terminów w oryginalnym zestawie wynosi d, a liczba pojęć używanych w każdej średniej to n. wówczas liczba terminów w ruchomych sekwencjach średnich będzie na przykład na przykład, jeśli masz sekwencję 90-dniowych kursów i biorąc 14-dniową średnią kroczącą cen, średnia ciągła sekwencja będzie miała 90 - 14 1 77 punktów. Ten kalkulator oblicza średnie ruchome, w których wszystkie wyrazy są ważone jednakowo. Można także tworzyć ważone średnie ruchome, w których niektóre terminy mają większą wagę niż inne. Na przykład nadanie większej wagi nowszym danym lub utworzenie centralnie ważonej średniej, w której średnie terminy są liczone bardziej. Więcej informacji można znaleźć w artykule dotyczącym średniej ważonej ruchomości i kalkulatora. Wraz z ruchomymi wartościami arytmetycznymi, niektórzy analitycy również patrzą na ruchomą medianę uporządkowanych danych, ponieważ mediana nie ma wpływu na dziwne wartości odstające. Jak obliczyć średnie kroczące w Excel Excel Analiza danych dla manekinów, 2. wydanie Komenda Analiza danych zapewnia narzędzie do obliczania średnie ruchome i wykładniczo wygładzone w Excelu. Załóżmy, na potrzeby ilustracji, że zebrałeś dzienne informacje o temperaturze. Chcesz obliczyć trzydniową średnią ruchomą 8212 średnią z ostatnich trzech dni 8212 w ramach prostego prognozowania pogody. Aby obliczyć średnie kroczące dla tego zestawu danych, wykonaj następujące kroki. Aby obliczyć średnią ruchome, kliknij najpierw przycisk polecenia Data Analysis (Dane) tab8217s. Gdy program Excel wyświetli okno dialogowe analizy danych, wybierz z listy pozycję Średnia ruchomości, a następnie kliknij przycisk OK. Excel wyświetla okno dialogowe Średnia ruchoma. Wskaż dane, których chcesz użyć do obliczenia średniej ruchomej. Kliknij pole tekstowe Zakres wprowadzania w oknie dialogowym Średnia ruchoma. Następnie zidentyfikuj zakres wejściowy, wpisując adres zakresu arkusza roboczego lub użyj myszy, aby wybrać zakres arkusza roboczego. Odnośnik zakresu powinien używać adresów bezwzględnych komórek. Bezwzględny adres komórki poprzedza literę kolumny i numer wiersza ze znakami, tak jak w A1: A10. Jeśli pierwsza komórka w zakresie wejściowym zawiera etykietę tekstową do identyfikacji lub opisu danych, zaznacz pole wyboru Etykiety w pierwszym wierszu. W polu tekstowym Odstęp, powiedz Excelowi, ile wartości ma zawierać obliczenie średniej ruchomej. Możesz obliczyć średnią ruchomą za pomocą dowolnej liczby wartości. Domyślnie program Excel używa ostatnich trzech wartości do obliczenia średniej ruchomej. Aby określić, że do obliczania średniej ruchomej użyta jest inna liczba wartości, wprowadź tę wartość w polu tekstowym Interval. Powiedz programowi Excel, gdzie umieścić dane średniej ruchomej. Użyj pola tekstowego Zakres wyników, aby określić zakres arkusza roboczego, w którym chcesz umieścić dane średniej ruchomej. W przykładzie z arkusza roboczego dane średniej ruchomej zostały umieszczone w zakresie arkusza roboczego B2: B10. (Opcjonalnie) Określ, czy chcesz wykres. Jeśli chcesz wykres przedstawiający średnią ruchomą, zaznacz pole wyboru Wynik wykresu. (Opcjonalnie) Wskaż, czy chcesz obliczać standardowe informacje o błędach. Jeśli chcesz obliczyć błędy standardowe dla danych, zaznacz pole wyboru Błędy standardowe. Program Excel umieszcza standardowe wartości błędów obok wartości średniej ruchomej. (Standardowa informacja o błędzie przechodzi do C2: C10.) Po zakończeniu określania, jakie średnie ruchome informacje mają zostać obliczone i gdzie chcesz je umieścić, kliknij OK. Program Excel oblicza średnią ruchomą. Uwaga: Jeśli program Excel nie ma wystarczająco dużo informacji do obliczenia średniej ruchomej dla błędu standardowego, umieszcza komunikat o błędzie w komórce. Możesz zobaczyć kilka komórek, które pokazują ten komunikat o błędzie jako wartość. Średnia roczna: Jakie są ich najbardziej popularnymi wskaźnikami technicznymi, średnie ruchome są używane do pomiaru kierunku bieżącej tendencji. Każdy typ średniej ruchomej (zwykle napisany w tym samouczku jako MA) jest wynikiem matematycznym, który jest obliczany przez uśrednienie liczby przeszłych punktów danych. Po ustaleniu, uzyskana średnia jest następnie nanoszona na wykres w celu umożliwienia handlowcom spojrzenia na wygładzone dane zamiast koncentrowania się na codziennych wahaniach cen, które są nieodłączne na wszystkich rynkach finansowych. Najprostszą formę średniej ruchomej, znaną jako prosta średnia ruchoma (SMA), oblicza się, przyjmując średnią arytmetyczną z danego zestawu wartości. Na przykład, aby obliczyć podstawową 10-dniową średnią ruchomą, sumuje się ceny zamknięcia z ostatnich 10 dni, a następnie podzielono wynik przez 10. Na rysunku 1 suma cen z ostatnich 10 dni (110) wynosi podzielona przez liczbę dni (10), aby osiągnąć średnią 10-dniową. Jeśli przedsiębiorca chce zamiast tego uzyskać średnią 50-dniową, zostanie wykonany ten sam rodzaj obliczeń, ale będzie obejmował ceny w ciągu ostatnich 50 dni. Wynikowa średnia poniżej (11) uwzględnia 10 ostatnich punktów danych, aby dać handlowcom pojęcie, jak wyceniany jest majątek w stosunku do ostatnich 10 dni. Być może zastanawiasz się, dlaczego techniczni handlowcy nazywają to narzędzie średnią ruchomą, a nie zwykłą średnią. Odpowiedź jest taka, że w miarę pojawiania się nowych wartości najstarsze punkty danych muszą zostać usunięte z zestawu, a nowe punkty muszą zostać zastąpione. W związku z tym zbiór danych stale się rozlicza dla nowych danych, gdy tylko stają się dostępne. Ta metoda obliczeń zapewnia, że tylko rozliczane są bieżące informacje. Na rysunku 2, po dodaniu do zestawu nowej wartości 5, czerwone pole (reprezentujące ostatnie 10 punktów danych) przesuwa się w prawo, a ostatnia wartość 15 zostaje usunięta z obliczeń. Ponieważ stosunkowo mała wartość 5 zastępuje wysoką wartość 15, można by oczekiwać, że średnia zestawu danych zmniejszy się, co ma miejsce w tym przypadku od 11 do 10. Jak wyglądają średnie kroczące Po wartościach MA zostały obliczone, są nanoszone na wykres, a następnie łączone w celu utworzenia średniej ruchomej linii. Te zakrzywione linie są wspólne na wykresach technicznych podmiotów gospodarczych, ale jak one są stosowane mogą się znacznie różnić (więcej o tym później). Jak widać na rysunku 3, można dodać więcej niż jedną średnią ruchu do dowolnego wykresu, dostosowując liczbę okresów używanych do obliczania. Te zakrzywione linie mogą początkowo wydawać się rozpraszające lub mylące, ale z biegiem czasu przyzwyczaisz się do nich. Czerwona linia jest po prostu średnią ceną w ciągu ostatnich 50 dni, a niebieska linia jest średnią ceną w ciągu ostatnich 100 dni. Teraz, gdy rozumiesz, czym jest średnia ruchoma i jak wygląda, dobrze jest wprowadzić inny typ średniej ruchomej i zbadać, jak różni się ona od poprzednio wspomnianej prostej średniej kroczącej. Prosta średnia ruchoma jest niezwykle popularna wśród handlowców, ale jak wszystkie wskaźniki techniczne, ma swoich krytyków. Wiele osób twierdzi, że przydatność SMA jest ograniczona, ponieważ każdy punkt w serii danych jest ważony tak samo, niezależnie od tego, gdzie występuje w sekwencji. Krytycy argumentują, że najnowsze dane są bardziej znaczące niż starsze dane i powinny mieć większy wpływ na końcowy wynik. W odpowiedzi na tę krytykę handlowcy zaczęli przykładać większą wagę do najnowszych danych, co od tego czasu doprowadziło do wynalezienia różnego rodzaju nowych średnich, z których najpopularniejszą jest wykładnicza średnia ruchoma (EMA). (Aby uzyskać więcej informacji, zobacz Podstawy ważonych średnich kroczących i jaka jest różnica między wartością SMA a wartością EMA) Wykładnicza średnia ruchoma Wykładnicza średnia krocząca jest rodzajem średniej ruchomej, która zwiększa wagę ostatnich cen w celu zwiększenia jej elastyczności do nowych informacji. Nauka nieco skomplikowanego równania do obliczania EMA może być niepotrzebna dla wielu traderów, ponieważ prawie wszystkie pakiety wykresów wykonują obliczenia dla ciebie. Jednakże, dla was, maniaków matematyki, macie tutaj równanie EMA: Używając wzoru do obliczenia pierwszego punktu EMA, możecie zauważyć, że nie ma żadnej dostępnej wartości do wykorzystania jako poprzednia EMA. Ten mały problem można rozwiązać, rozpoczynając obliczenia za pomocą prostej średniej ruchomej i kontynuując z powyższą formułą. Przygotowaliśmy przykładowy arkusz kalkulacyjny zawierający rzeczywiste przykłady obliczania zarówno prostej średniej ruchomej, jak i wykładniczej średniej ruchomej. Różnica między EMA i SMA Teraz, gdy masz już lepsze zrozumienie sposobu obliczania SMA i EMA, przyjrzyjmy się, jak te średnie różnią się. Patrząc na obliczenia EMA, zauważysz, że większy nacisk kładzie się na ostatnie punkty danych, co czyni je typem średniej ważonej. Na rysunku 5 liczba okresów czasu używanych w każdej średniej jest identyczna (15), ale EMA reaguje szybciej na zmiany cen. Zwróć uwagę, że EMA ma wyższą wartość, gdy cena rośnie, i spada szybciej niż SMA, gdy cena spada. Ta responsywność jest głównym powodem, dla którego wielu inwestorów woli używać EMA przez SMA. Co oznaczają różne dni Średnie ruchome są całkowicie konfigurowalnym wskaźnikiem, co oznacza, że użytkownik może swobodnie wybierać dowolne ramy czasowe, jakie chcą uzyskać przy tworzeniu średniej. Najczęstsze okresy stosowane w średnich kroczących to 15, 20, 30, 50, 100 i 200 dni. Im krótszy jest przedział czasowy do stworzenia średniej, tym bardziej wrażliwy będzie na zmiany cen. Im dłuższy przedział czasu, tym mniej wrażliwy lub bardziej wygładzony, średnia będzie. Nie ma odpowiedniej ramki czasowej, którą można użyć podczas konfigurowania średnich kroczących. Najlepszym sposobem na określenie, który z nich najlepiej Ci odpowiada, jest eksperymentowanie z różnymi okresami czasu, aż znajdziesz taki, który pasuje do Twojej strategii.
No comments:
Post a Comment